
LLNL-CONF-410707

Compiler-Enhanced Incremental
Checkpointing for OpenMP
Applications

G. Bronevetsky, D. Marques, K. Pingali, S.
McKee, R. Rugina

February 19, 2009

IEEE International Parallel & Distributed Processing
Symposium
Rome, Italy
May 25, 2009 through May 29, 2009

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

1

Compiler-Enhanced Incremental Checkpointing for
OpenMP Applications

Greg Bronevetsky
Lawrence Livermore National Lab

greg@bronevetsky.com

Daniel Marques
Ballista Securities

marques77@gmail.com

Keshav Pingali
The University of Texas at Austin

pingali@cs.utexas.edu

Sally McKee
Chalmers University of Technology

mckee@chalmers.se

Radu Rugina
VMWare

radu.rugina@gmail.com

Abstract—As modern supercomputing systems reach the
peta-flop performance range, they grow in both size and
complexity. This makes them increasingly vulnerable to
failures from a variety of causes. Checkpointing is a
popular technique for tolerating such failures, enabling
applications to periodically save their state and restart
computation after a failure. Although a variety of auto-
mated system-level checkpointing solutions are currently
available to HPC users, manual application-level check-
pointing remains more popular due to its superior perfor-
mance. This paper improves performance of automated
checkpointing via a compiler analysis for incremental
checkpointing. This analysis, which works with both se-
quential and OpenMP applications, significantly reduces
checkpoint sizes and enables asynchronous checkpointing.

I. INTRODUCTION

Dramatic growth in supercomputing system capability
from tera-flops to peta-flops has resulted in dramati-
cally increased system complexity. Despite significant
efforts to reduce the complexity of system software, the
component complexity of these machines is still rising
with rising node and core counts. Large-scale systems
like IBM BlueGene, RoadRunner and Cray XT have
grown to more than 100k processors and tens of TBs of
RAM; upcoming designs promise to significantly exceed
these limits. While these machines are made from high-
quality components, their increasing size makes them
increasingly vulnerable to faults, including hardware
breakdowns [14] and soft errors [9].

Checkpointing is a common technique for tolerating
failures. Application state is periodically saved to reliable
storage, and is used to roll the application back to this
prior state on failure. However, automated checkpointing
can be very expensive due to the size of saved data
and amount of time the application loses while blocked.
For example, dumping all of RAM on a 128K-processor
BlueGene/L supercomputer to a parallel file system takes
approximately 20 minutes [12]. This cost can be reduced

via incremental checkpointing [13], where application
writes are tracked by a runtime monitor. If the mon-
itor detects no modifications to some memory region
between two adjacent checkpoints, that region is omitted
from the second checkpoint, thereby reducing its size.
Prior work has explored a variety of monitors, including
virtual memory fault handlers [8], page table dirty bits,
and cryptographic encoding techniques [4].

When application writes are tracked using virtual
memory fault handlers, checkpointing can be optimized
via “copy-on-write checkpointing” or, more generally,
“asynchronous checkpointing”. At each checkpoint, all
pages to be checkpointed are marked non-writable and
placed on a write-out queue. While the application con-
tinues executing a separate thread asynchronously saves
pages on the write-out queue. When the checkpointing
thread is finished saving a given page, the page is marked
writable. If the application tries to write to a page that
hasn’t yet been saved, the segmentation fault handler
is called, a copy of the page is placed in the write-
out queue, and the application resumes execution. Asyn-
chronous checkpointing thus decouples the application’s
execution from the checkpointing operation and allows
checkpointing to be spread over a longer period of time.
This reduces both the amount of time the application
blocks on the checkpoint and the pressure on the I/O
system and the network.

While prior work focuses on runtime techniques for
monitoring application writes, this paper presents a
compile-time analysis for tracking such writes. Given an
application that has been manually annotated with calls
to a checkpoint function, for each array the analysis
identifies points in the code such that either:
• there exist no writes to the array between the point

in the code and the next checkpoint and/or
• there exist no writes to the array between the last

checkpoint and the point in the code

2

When the analysis can prove that some array is not mod-
ified along all paths between two checkpoints, this array
is omitted from the second checkpoint. Furthermore,
since each array can be asynchronously saved during
the time period from the last pre-checkpoint write to the
array until the first post-checkpoint write, the analysis
supports asynchronous checkpointing. This exceeds the
capabilities of runtime techniques because asynchronous
checkpointing can begin even before a checkpoint. How-
ever, because it works at array granularity rather than
the page- or word-granularity of runtime monitoring
mechanisms, its decisions may be more conservative.
Furthermore, the analysis assumes that when the appli-
cation reaches a one potential checkpoint location, it can
determine if it will take a checkpoint when it reaches the
next location.

Prior work on compiler analyses for checkpoint op-
timization [10] [15] has focused on pure compiler so-
lutions that reduce the amount of data checkpointed.
Our work presents a hybrid compiler/runtime approach
that uses the compiler to optimize certain portions of an
otherwise runtime checkpointing solution. The resulting
system thus both reduce the amount of data being
checkpointed, and supports purely runtime techniques
such as asynchronous checkpointing.

II. COMPILER/RUNTIME INTERFACE

Our incremental checkpointing system is divided
into run-time and compile-time components. The run-
time component checkpoints application memory inside
checkpoint calls by either saving it in a blocking
fashion or spawning a thread to checkpoint it asyn-
chronously. Memory regions that do not contain arrays (a
small portion of the code in most scientific applications)
are saved in a blocking fashion. Arrays are saved in
an incremental and possibly asynchronous fashion, as
directed by the following annotations, which are placed
by the compiler.
• add_array(ptr, size) Called when an array

comes into scope to identify the array’s memory
region.

• remove_array(ptr) Called when an array
leaves scope. Memory regions that have been added
but not removed are treated incrementally by the
checkpointing runtime.

• start_chkpt(ptr) Called to indicate that the
array that contains the address ptr will not be
written until the next checkpoint. The runtime may
place this array on the write-out queue and begin to
asynchronously checkpoint this array.

• end_chkpt(ptr) Called to indicate that the ar-
ray that contains the address ptr is about to be
written. The end_chkpt call must block until the

checkpointing thread finishes saving the array. It is
guaranteed that there exist no writes to the array be-
tween any checkpoint and the call to end_chkpt.

The runtime asynchronously checkpoints each array be-
tween the calls to start_chkpt and end_chkpt that
refer to it. If start_chkpt is not called for a given
array between two adjacent checkpoints, this array is
omitted from the second checkpoint because it was not
written to between the checkpoints.

Original Transformed
Code Code
checkpoint() checkpoint()

... ...

A[...]=... end_chkpt(A)

... A[...]=...

for(...) { start_chkpt(A)

... ...

B[...]=... for(...) {
... ...

} end_chkpt(B)

... B[...]=...

checkpoint() ...

}
start_chkpt(B)

...

checkpoint()

Fig. 1. Transformation example

Figure 1 shows an example of how an application
may be transformed to use this API. The original code
contains two checkpoint calls, with assignments to
arrays A and B in between. The code within the ...’s
contains no writes to A or B. The analysis transforms the
code to include a call to end_chkpt(B) immediately
before the write to B and a start_chkpt(B) call at
the end of B’s write loop. This difference in placement
is because a start_chkpt(B) call inside the loop
may be followed by writes to B in subsequent iterations.
Placing the call immediately after the loop ensures that
this cannot happen.

III. COMPILER ANALYSIS

The incremental checkpointing analysis is a dataflow
analysis that consists of forward and backward compo-
nents. The forward component, called the Dirty Analysis,
identifies the first write to each array after a checkpoint.
The backward component, called the Will-Write analysis,
identifies the last write to each array before a checkpoint.

A. Basic Analysis
For each array at each node n in a function’s control-

flow graph(CFG) the analysis maintains two bits of
information:

3

• mustDirty[n](array): True if there must ex-
ist a write to array along every path from a
checkpoint call to this point in the code; False
otherwise. Corresponds to the dataflow information
immediately before n.

• mayWillWrite[n](array): True if there may ex-
ist a write to array along some path from a this
point in the code to a checkpoint call; False
otherwise. Corresponds to the dataflow information
immediately after n.

mustDirty[n](array) =
if (n = first node)False
else

⋂
m∈pred(n) mustDirtyAft[m](array)

mustDirtyAft[m](array) =
[[m]](mustDirty[m](array), array)

mayWillWrite[n](array) =
(if n = last node)False
else

⋃
m∈succ(n) mayWillWriteBef [m](array)

mayWillWriteBef [m](array) =
[[m]](mayWillWrite[m](array), array)

Statement m [[m]](val, array)
array[expr] = expr True
checkpoint() False
other val

Fig. 2. Dataflow formulas for Dirty and Will-Write analyses

Figure 2 presents the dataflow formulas used to prop-
agate this information through the CFG. The Dirty and
Will-Write analyses start at the top and bottom of each
function’s CFG, respectively, in a state where all arrays
are considered to be clean (e.g., consistent with the
previous and next checkpoint, respectively), meaning that
their write bit is False. As they propagate forward and
backward through the CFG, respectively, at each array
write they set the corresponding array’s bit to True.
When each analysis reaches a checkpoint call, it
resets the state of all arrays to False. For the Dirty
Analysis this is because all arrays are checkpointed,
which makes them clean. For the WillWrite Analysis,
at the point immediately before a checkpoint there exist
no writes to any arrays until the next checkpoint, which
is the immediately following statement.

Figure 3 shows the algorithm used to annotate the
application source code with calls to start_chkpt
andend_chkpt. The algorithm adds such calls in three
situations. First, it inserts end_chkpt(array) im-
mediately before each write to array for which there
exists some path that starts from a call to checkpoint

foreach (array array), foreach (CFG node n)
// if n is the first write to array
// since the last checkpoint call
if(mustDirty[n](array) = False ∧

mustDirtyAft[n](array) = True)
place end_chkpt(array)
immediately before n

// if n is the last write to array until the next
// checkpoint call
if(mayWillWriteBef [n](array) = True ∧

mayWillWrite[n](array) = False)
place start_chkpt(array)
immediately after n

// if n follows the last write on a branch where
// array is no longer written
if(mayWillWriteBef [n](array) = False ∧

(∃m ∈ pred(n).
mayWillWrite[m](array) = True))

place start_chkpt(array)
on edge m→ n

Fig. 3. Transformation for start_chkpt/end_chkpt insertion

and contains no writes to array. Second, it inserts
start_chkpt(array) immediately after each write
to array that is not followed by any write to array
along any path that leads to a checkpoint call.
Third, it inserts start_chkpt(array) on each CFG
branching edge m → n if mayWillWrite[n](array)
is True at m, but False at n as a result of dataflow
information being merged at branching point m. This
situation occurs commonly in loops that write to an array.
In this case, mayWillWrite[n](array) is True at all
points in the loop body, since array may be written in
subsequent loop iterations. The flag becomes False on
the edge that branches out of the loop, and the compiler
inserts the start_chkpt(array) call on this edge.

Because the Dirty analysis is based on must-write in-
formation, end_chkpt calls are conservatively placed
as late as possible after checkpoints. Furthermore, the
Will-Write analysis’ use of may-write information con-
servatively places start_saves as early as possible
before checkpoints.

Figure 4 provides an example of how the analy-
sis operates on the code from Figure 1, showing the
mustDirty and mayWillWrite states at each CFG
node as well as the final transformed code. Observe that
the start_chkpt and end_chkpt calls are inserted
at points in the CFG where an array’s mustDirty and
mayWillWrite state, respectively, changes from False
to True.

4

Original Code Code with Dirty States Code with Will-Write States Transformed Code
checkpoint(); checkpoint(); [A→F,B→F] checkpoint(); [A→T,B→T] checkpoint();
... ... [A→F,B→F] ... [A→T,B→T] ...
A[...]=...; A[...]=...; [A→F,B→F] A[...]=...; [A→F,B→T] end_chkpt(A);
... ... [A→T,B→F] [A→F,B→T] A[...]=...;
for(...) { for(...) { [A→T,B→F] for(...) { [A→F,B→T] start_chkpt(A);
... ... [A→T,B→F] ... [A→F,B→T] ...
B[...]=...; B[...]=...; [A→T,B→F] B[...]=...; [A→F,B→T] for(...) {
... ... [A→T,B→T] ... [A→F,B→T] ...
} } [A→T,B→T] } [A→F,B→T] end_chkpt(B);
... ... [A→T,B→F] ... [A→F,B→F] B[...]=...;
checkpoint(); checkpoint(); [A→T,B→F] checkpoint(); [A→F,B→F] ...

}
start_chkpt(B);
...
checkpoint();

Fig. 4. Analysis example

B. Loop-Sensitive Analysis

Although simple and effective, the above transfor-
mations can introduce high overheads into application
loops. This can be seen in the transformed code in Fig-
ure 4. start_chkpt(B) is placed immediately after
the loop that writes B, while end_chkpt(B) immedi-
ately before the write to B itself. The reason for this dif-
ference is that end_chkpt is placed using must-write
information, and the placement of start_chkpt uses
may-write information. As a result, end_chkpt(B) is
executed during each loop iteration, resulting in high
overhead for small, deeply-nested loops, which are very
common in scientific computing.

We address problem by augmenting the above analysis
with a loop-detection heuristic, shown in Figure 5. This
heuristic extends must-Dirty and may-WillWrite infor-
mation used in Section III with may-Dirty information,
which allows it to identify the pattern of dataflow facts
that must hold at the top of the first loop that writes to
an array after a checkpoint. Figure 5 shows the CFG of
such a loop and identifies edges in the CFG where the
various dataflow facts are True.

i=0;

i<n

B[i]=?;

i++;

...

checkpoint()
mustDirty[B]=True
mayDirty[B]=True
mayWillWrite[B]=True

Fig. 5. Dataflow pattern for writes inside loops

The pattern at node i < n is:
• mustDirty[i < n](B) = False
• mayDirty[i < n](B) = True
• mayWillWrite[i < n](B) = True
• pred(i < n) > 1

Furthermore, mustDirty[p](B) = False at node p, the
immediate predecessor of the loop test node i < n. Thus,
placing end_chkpt(B) on the edge p → [i < n]
ensures that end_chkpt(B) is called before any write
to B and is not executed in every iteration of the loop.

Since this heuristic only applies to loops, it does
not place end_chkpt(A) before the write to A in
Figure 1. Thus, both rules are needed to ensure that
end_chkpt is placed conservatively. We first use the
loop-placement rule to place end_chkpt(array)
before loops and then use the basic rule from Sec-
tion III to place end_chkpt(array) in code loca-
tions that remain uncovered. An additional EndChkpt-
Placed analysis ensures that we do not place
end_chkpt(array) at nodes where there already
exists an end_chkpt(array) on every path from
any checkpoint call to the node. EndChkpt-Placed
is a forward analysis that is executed as a separate
pass from the Dirty and Will-Write passes. It main-
tains a bit of information for every array at every
CFG node. mustEndChkptP laced[n](array) is set
to True if end_chkpt(array) is to be placed
immediately before node n and set to False if
start_chkpt(array) is to be inserted at n. The
latter rule ensures that the “exclusion-zone” of a given
end_chkpt(array) call doesn’t last past the next
checkpoint call.

The loop-sensitive analysis implements this rule by
maintaining for each CFG node n the following addi-
tional dataflow information:
• mayDirty[n](array): True if there may ex-

ist a write to array along some path from a

5

checkpoint call to this point in the code; False
otherwise. Corresponds to the dataflow information
immediately before n.

• mustEndChkptP laced[n](array): True if all
paths from any checkpoint call to this
point in the code contain a point where a
end_chkpt(array) call will be placed.

Figure 6 shows how this information is computed
and Figure 7 provides he modified rules for placing
end_chkpt calls. Figure III-B then extends the exam-
ple in Figure 1 with mustEndChkptP laced informa-
tion and shows how end_chkpt calls are placed.

foreach (array), foreach (CFG node n) in app
if placeEndChkptNode(n, array)

place end_chkpt(array)
immediately before n

if ∃m ∈ pred(n).
placeEndChkptEdge(m, n, array)

place end_chkpt(array) on
edge m→ n

Fig. 7. Loop-sensitive transformation for end_chkpt insertion

C. Inter-Procedural Analysis
We extend the above analysis with a context-

insensitive, flow-sensitive inter-procedural analysis that
applies the data-flow analysis from Section III-B to the
CFG that contains all of the application’s functions.
When the analysis reaches a function call node for the
first time, it computes a summary for that function by
applying the dataflow analysis using the formulas in
Figure 6, but with a modified lattice.

In addition to the standard True and False, we
extended lattice contains an additional Unset state that
appears below True and False. When analyzing a given
function all the dataflow facts for all arrays are initialized
to Unset at the start or end of the function (start for the
forward analyses and end for the backward analysis).
We then execute the standard analysis on the function
using the extended lattice with Unset treated as False
by the EndChkpt-Placed analysis. Array states that are
not modified by a given pass remains Unset at the end
of a the pass. For the Dirty and Will-Write analyses this
means that the array is not written to inside the function.
For the EndChkpt-Placed analysis, this means that no
end_chkpt calls are placed for this array inside the
function. The function summary is then the set dataflow
facts for all arrays at the opposite end of the function:
end for the forward analyses and start for the backward
analysis. The effects of a function call on dataflow state
is computed by applying the function summary as a mask
on all dataflow state. If dataF low[array] = Unset in
the function summary, array’s mapping is not changed
in the caller. Otherwise, it is set to dataF low[array].

IV. OPENMP SUPPORT

The increasing popularity of shared memory platforms
for HPC (ranging from clusters of symmetric multi-
processors to large shared-memory machines like the
SGI Altix) has led to the increased importance of the
shared memory programming model. OpenMP is one
of the most popular shared-memory APIs, with many
applications written in either pure OpenMP or a combi-
nation of OpenMP and MPI. We have extended the above
analysis to support multi-threaded OpenMP applications.
OpenMP offers a structured fork-join parallelism model,
with parallel regions of code identified using #pragma
omp parallel. It also offers support for variable
privatization, work-sharing, and synchronization. In light
of prior work on shared memory checkpointing, our work
has focused on blocking checkpointing tools such as
C3[5] [6] and BLCR[7], for these have proved to be
the most portable. In particular, the analysis assumes
that checkpoint calls are (i) global barriers across
all threads, and (ii) every thread will execute the same
checkpoint call as part of the same checkpoint. This
is similar to OpenMP’s semantics for placing #pragma
omp barrier.

The intuition behind our analysis extension is that
each thread is treated as a sequential application. The
sequential analysis is applied to the application, ignor-
ing any interactions among threads. This ensures that
start_chkpt and end_chkpt calls are placed such
that no thread:
• writes to array between a
start_chkpt(array) call and a
checkpoint call, or

• writes to array between a checkpoint call and
an end_chkpt(array) call.

This alone is sufficient for code outside of #pragma
omp parallel constructs and code that deals with
private variables. This is because in both cases the
array access patterns are sequential. However, it presents
problems for parallel code that deals with shared vari-
ables. Consider the case of start_chkpt(array),
where array is shared. Although each thread is
guaranteed to call start_chkpt(array) after the
last pre-checkpoint write to array, the fact that one
thread has called start_chkpt(array) does not
mean that all threads are finished writing to array.
As such, in the multi-threaded setting the checkpoint-
ing runtime is not allowed to begin asynchronously
checkpointing array until all threads have called
start_chkpt(array). Similarly, the checkpointing
runtime must finish checkpointing array when any one
thread calls end_chkpt(array).

6

mayDirty[n](array) =

{
False if n = first node⋃

m∈pred(n) mayDirtyAfter[m](array) otherwise
mayDirtyAfter[m](array) = [[m]](mayDirty[m](array), array)

mustEndChkptP laced[n](array) =

=

{
False if n = first node⋂

m∈pred(n) mustEndChkptP lacedAfter[m](array) otherwise
mustEndChkptP lacedAfter[m](array) =

if ¬ placeStartChkptNode(m, array) ∧ ¬ ∃l ∈ pred(m). placeStartChkptEdge(l,m, array) then
False

else if (placeEndChkptNode(m, array) ∨ ∃l ∈ pred(m). placeEndChkptEdge(l,m, array)) then
True

else mustEndChkptP laced[m](array)

// end_chkpt(array) will be placed immediately before node n if
placeEndChkptNode(n, array) =

// node n is the first write to array since the last checkpoint
(mustDirty[n](array) = False ∧mustDirtyAft[n](array) = True)

// end_chkpt(array) will be placed along the edge m→ n if
placeEndChkptEdge(m, n, array) =

// node n is itself clean but predecessor m is dirty, n contains or is followed
// by a write and predecessor m is not itself preceded by end chkpt(array)
(mustDirty[n](array) = False ∧mayDirty[n](array) = True∧
mayWillWrite[n](B) = True ∧mustDirtyAft[m](array) = False∧
mustEndChkptP laced[m](array) = False)

// start_chkpt(array) will be placed immediately after node n if
placeStartChkptNode(n, array) =

// node n is the last write to array until the next checkpoint
(mayWillWriteBef [n](array) = True ∧ mayWillWrite[n](array) = False)

// start_chkpt(array) will be placed along the edge m→ n if
placeStartChkptEdge(m, n, array) =

// node n follows the last write to array until the next checkpoint
(mayWillWriteBef [n](array) = False ∧mayWillWrite[m](array) = True)

Fig. 6. Dataflow formulas for the loop-sensitive extension

While the start_chkpt rule it simple, it does
not work unless the runtime knows the number of
threads that will call start_chkpt between a pair of
checkpoints. Unless this is known, it is not possible to
determine whether a given thread’s start_chkpt is
the last one. OpenMP applications spawn new threads
by executing code that is marked by #pragma omp
parallel. Variables declared inside this block are
private to each thread and variables declared outside this
block may be either private or shared among the spawned
threads, with heap data always being shared. A spawned
thread may spawn additional threads of its own, making
any variable it has access to either shared among all
the newly spawned threads or private to each of them.
We track the number of threads that a given array is
shared among by adding calls to the start_thread

and end_thread functions at the top and bottom of
each #pragma omp parallel region, respectively:
• start_thread(parentThread,
privateArrays) - Informs the checkpointing
runtime that parentThread has spawned a new
thread, giving it private copies of the arrays in
the privateArrays list. All other arrays are
assumed to be shared between parentThread
and the new thread.

• end_thread() - Informs the runtime that the
given thread is about to terminate.

Note that since making a shared variable private to a
thread is equivalent to creating a copy of the original
variable, the start_thread and end_thread calls
imply add_array and remove_array calls, respec-
tively, for the privatized variables.

7

Original Code Code with Must-EndChkptPlaced States Transformed Code
... ... [A→F,B→F] ...
A[...]=...; A[...]=...; [A→F,B→F] end_chkpt(A);
... [A→T,B→F] A[...]=...;
for(...) { for(...) { [A→T,B→T] start_chkpt(A);
... ... [A→T,B→T] ...
B[...]=...; B[...]=...; [A→T,B→T] end_chkpt(B);
... ... [A→T,B→T] for(...) {
} } [A→T,B→T] ...
... ... [A→T,B→T] B[...]=...;
checkpoint(); checkpoint(); [A→T,B→T] ...

}
start_chkpt(B);
...
checkpoint();

Fig. 8. Transformation example with loop-sensitive optimizations

While these runtime monitoring mechanisms
can identify the number of threads that may call
start_chkpt(array), it is not clear that all
of these threads will actually perform the call,
since different threads may execute different code.
Appendix VI presents a proof (Theorem 2) that if
one thread calls start_chkpt(array) between two
checkpoints, all threads will do the same. Since it is
possible for a thread to spawn new threads after calling
start_chkpt(array), the runtime considers such
threads as having also called start_chkpt(array),
until the next checkpoint call. Similarly, if threads
in a thread group call start_chkpt(array) before
exiting their #pragma omp parallel region, the
checkpointing runtime decrements the count of threads
that have already called start_chkpt(array)
appropriately. Theorem 1 guarantees that if one such
thread calls start_chkpt(array), they all do.

V. EXPERIMENTAL EVALUATION
A. Experimental Setup

We have evaluated the effectiveness of the above
compiler analysis by implementing it on top of the
ROSE [11] source-to-source compiler framework and
applying it to the OpenMP versions [1] of the NAS
Parallel Benchmarks [2]. We have focused on the codes
BT, CG, EP, FT, LU, SP. MG was omitted from our
analysis since it uses dynamic multi-dimensional arrays
(arrays of pointers to lower-dimensional arrays), which
requires additional complex pointer analyses to identify
arrays in the code. In contrast, the other codes use
contiguous arrays, which require no additional reason-
ing power. Each NAS code was augmented with a
checkpoint call at the top of its main compute loop
and one immediately after the loop.

The target applications were executed on all problem
classes (S, W A, B and C, where S is the smallest
and C the largest), on 4-way 2.4Ghz dual-core Opteron

SMPs, with 16GB of RAM per node (Atlas cluster at
the Lawrence Livermore National Laboratory). Each run
was performed on a dedicated node, regardless of how
many of the node’s cores were actually used by the
NAS benchmark. All results are averages of 10 runs and
each application was set to checkpoint 5 times, with the
checkpoints spaced evenly throughout the application’s
execution. This number was chosen to allow us to sample
the different checkpoint sizes that may exist in different
parts of the application without forcing the application
to take a checkpoint during every single iteration, which
would have been unrealistically frequent. Data for BT,
EP and FT is not available at input size C because
in these codes it requires too much static memory to
compile.

The transformed codes were evaluated with two
checkpointers. First, we used the Lazarus sequen-
tial incremental checkpointer, which implements page-
protection-based incremental and asynchronous check-
pointing. We extended this checkpointer with the API
from Section II and used it to compare the performance
of purely runtime and compiler-assisted incremental and
asynchronous checkpointing. Since we did not have a
multi-threaded checkpointer available to us, we devel-
oped a model checkpointing runtime to evaluate the per-
formance of our compiler technique on multi-threaded
applications. This model runtime implements the API
from Section II and simulates the behavior of a real
checkpointer. It performs the same state tracking and
synchronization as a real checkpointer but instead of
actually saving application state, it simply sleeps for
an appropriate period of time. One side-effect is that
our checkpointer does not simulate the overheads due
to saving variables other than arrays. However, since
in the NAS benchmarks such variables make up a tiny
fraction of overall state, the resulting measurement error
is small. Furthermore, because the model checkpointer
can sleep for any amount of time, it can simulate

8

checkpointing performance for a wide variety of storage
I/O bandwidths.

The checkpointers have two major modes of operation:
PR mode, where incremental checkpointing is done
using a “Purely-Runtime mechanism”, and CA mode,
where “Compiler-Assistance” is used. Lazarus supports
both modes, and the model checkpointer only supports
the CA mode. Both checkpointers also support all four
permutations of the following modes:
Checkpoint contents:
• Full: Lazarus saves the application’s entire state

and the model checkpointer simulates the time it
would take to checkpoint all currently live arrays.

• Incr: Incremental checkpointing, where only the
data that has been written to since the last check-
point is saved. In PR mode the operating system’s
page protection mechanism is used to track whether
a given page has been written to since the last
checkpoint. In CA mode the checkpointer saves all
arrays for which start_chkpt has been called
since the last checkpoint.

Checkpoint timing:
• Block: Blocks the checkpoint call while saving

the appropriate portion of application state.
• Asynch: Checkpointing is performed

asynchronously. The model checkpointer uses
a single extra thread. In PR mode Lazarus launches
an extra process, using the fork system call. In
CA mode it spawns a separate checkpointing thread
for each application array.

B. Pure-Runtime vs.
Compiler-Assisted Checkpointing

This section compares the performance of compiler-
assisted checkpointing with purely-runtime checkpoint-
ing, using Lazarus.

1) Checkpoint Size: We begin begin by comparing
the sizes of the checkpoints generated by using Lazarus
in PR and CA modes. In the context of the NAS
codes, which have an initialization phase, followed by
a main compute loop, the primary effect of the analysis
is to eliminate write-once arrays from checkpointing.
These are the arrays that are written to during the
initialization phase and then only read from during the
main compute loop. As such, since there do not exist
any start_chkpt calls for these arrays during the
main compute loop, they are only saved during the
first checkpoint and omitted in subsequent checkpoints.
In contrast, Lazarus’ page-protection-based mechanism
can track any changes to application state, at a page
granularity.

Figure 9 shows the % reduction in the sizes of
checkpoints created by the two modes (data for IS

is not available due to technical issues with Lazarus).
For each application we show results for PR and CA
modes for all input sizes. It can be seen that while for
small inputs there is sometimes a difference between
the effectiveness of the two approaches, for larger input
sizes the difference becomes very small. This is be-
cause these benchmarks overwrite enough of their state
that a page-granularity-based detection method cannot
identify regions of memory that have not changed from
checkpoint to checkpoint. This shows that it is possible
for a compiler-based mechanism to achieve the same
reductions in checkpoint size as are available from a
runtime-based technique, without any runtime monitor-
ing. Since both the compiler technique presented in this
paper and page-based incremental checkpointing operate
at a fairly coarse grain of whole arrays and whole
pages, in future work we plan to compare finer grain
runtime techniques [4] to more accurate compiler-based
techniques.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

bt cg ep ft lu sp

S-PR
S-CA
W-PR
W-CA
A-PR
A-CA
B-PR
B-CA
C-PR
C-CA

Class -
 Mode

Fig. 9. Checkpoint Sizes Generated by Lazarus in PR and CA modes

2) Running Time: The impact of the various check-
pointing mechanisms on the application running time
was evaluated by looking at (i) the cost of using the
given mechanism, without actually writing anything to
disk and (ii) the cost of writing to disk using the mech-
anism. Figure 10 shows the running time of each NAS
application on input size A (other inputs show similar
results), both without Lazarus (Original column) and
with each Lazarus checkpointing configuration where
no checkpoint data is written to disk. It can be seen
that the checkpointing mechanisms themselves add very
little cost to original application and all checkpointing
mechanisms have similar base overheads.

Figure 11 shows the difference between the above
times and the running times of these configurations
on input size A, where Lazarus writes checkpoints to
the parallel file system. This is the time spent writing
checkpoints under each scheme. It can be seen that
pure-runtime incremental checkpointing has the smallest

9

ultimate impact on application performance by a wide
margin, with the asynchronous algorithm being gener-
ally faster than the synchronous algorithm. Incremental
checkpointing is generally much cheaper than record-
ing full checkpoints but asynchronous checkpointing
is not always faster than blocking checkpointing be-
cause of the additional synchronization costs. Compiler-
assisted checkpointing is more expensive than pure-
runtime checkpointing. However, it is not clear how
much of this is due to the basic approach and how much
to the implementation details between the two check-
pointing runtimes (fork vs. one checkpointing thread
per array). We expect to examine this in the future by
augmenting existing multi-threaded checkpointers such
as BLCR [7] with the API from Section II.

0

50

100

150

200

250

300

350

bt cg ep ft is lu sp

Full-Block-PR
Incr-Block-PR
Full-Asynch-PR
Incr-Asynch-PR
Full-Block-CA
Incr-Block-CA
Full-Asynch-CA
Incr-Asynch-CA
Original

Fig. 10. Execution times with all Lazarus configurations, no data
written (input size A)

0

2

4

6

8

10

12

14

16

bt cg ep ft is lu sp

Full-Block-PR
Incr-Block-PR
Full-Asynch-PR
Incr-Asynch-PR
Full-Block-CA
Incr-Block-CA
Full-Asynch-CA
Incr-Asynch-CA

Fig. 11. Checkpointing time for all Lazarus configurations, data
written to parallel file system (input size W)

C. Compiler-Assisted OpenMP Checkpointing

This section looks at the cost of checkpointing for
multi-threaded OpenMP applications, using the model
checkpointing runtime.

1) Checkpoint Size: Figure 12 shows the % reduction
in the sizes of checkpoints as a result of using the
compiler analysis for input size A (very similar numbers
for other input sizes). The amount of savings varies
between different applications, ranging from 79% for CG
to 0% for EP with 1 thread. There is little change in the
reduction as the number of threads increases. The only
exceptions are EP where it ranges from 0% for 1 thread
to 17% for 8 threads and IS, which ranges from 15%
for 1 thread to 26% for threads.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

bt cg ep ft is lu sp

1
2
4
8

Fig. 12. Checkpoint sizes generated by the model checkpointer
(input size A)

2) Running Time - Incremental Checkpointing: Fig-
ure 13 shows the the % reduction in the running times
of the NAS applications, running with the model check-
pointer in configuration Incr-Block relative to using
configuration Full-Block. We show only CG and EP
on 4 threads, since the behavior of these codes is similar
to that of other codes that have a small or a large
checkpoint size reduction, respectively, and the number
of threads has no effect on this behavior. The x-axis is
the I/O bandwidth used in the experiments, ranging from
1 MB/s to 1 GB/s in multiples of 4, including a datapoint
for infinite bandwidth. This range includes a variety of
use-cases, including hard-drives (60MB/s write band-
width) and 10 Gigabit Ethernet(1GB/s bandwidth). For
EP, although there is some difference in performance
between the two configurations, the effect is generally
small and always < 20% at all bandwidths. However, for
CG, the effect is quite dramatic, with the improvement
from IncrChkpt-Block ranging from 95% for low
bandwidths, when the cost of checkpointing is important,
to < 10% high bandwidths.

D. Running Time - Asynchronous Checkpointing

We evaluated the performance of asynchronous check-
pointing by comparing the execution time of appli-
cations that use Incr-Asynch to those that use

10

-20.00%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

1024 4096 16384 65536 262144 1048576 Infinite

S
W
A
B
C

-20.00%

-15.00%

-10.00%

-5.00%

0.00%

5.00%

10.00%

15.00%

20.00%
1024 4096 16384 65536 262144 1048576 Infinite

S
W
A
B
C

CG EP

Fig. 13. Execution time differences between Incr-Block and Full-Block

-7.00%

-5.00%

-3.00%

-1.00%

1.00%

3.00%

5.00%

1 2 4 8

bt
cg
ep
ft
is
lu
sp

-128%

Fig. 14. Relative execution time differences between
Incr-Asynch and Incr-Block with infinite bandwidth
(input size A)

Incr-Block. Figure 14 shows the % reduction in ap-
plication running times from using with Incr-Asynch
instead of Incr-Block for input size A (same patterns
for other input sizes). No data was saved to highlight
the raw overhead of the runtime mechanisms required
for blocking and asynchronous checkpointing. For most
applications there is very little difference between the
two configurations. The only exception is SP on 4
threads, where running with Incr-Asynch more than
2x slower than running with Incr-Block. The reason
appears to be the addition of the extra thread. The nodes
we were using have different memory banks associated
with different pairs of processors. As such, an the extra
checkpointing thread that is assigned to a processor that
does not share a memory bank with the main computing
processors, will suffer from poor synchronization perfor-
mance. In contrast, blocking checkpointing has no extra
thread and requires no additional synchronization.

Figure 15 shows the same configurations but with
the full range of bandwidths. Data for 2-thread and 4-
thread runs is presented, since it is typical. Asynchronous
checkpointing tends to perform better than blocking
checkpointing for most bandwidths and applications,
although the improvement does not hold in all cases.
CG performs worse with asynchronous checkpointing for
small bandwidths for all thread numbers and SP shows
a large slowdown with asynchronous checkpointing.

VI. SUMMARY

We have presented a novel compiler analysis for opti-
mizing automated checkpointing. Given an application
that has been augmented by the user with calls to a
checkpoint function, the analysis identifies regions
in the code that do not have any writes to each given
array. This information can be used to reduce the amount
of data checkpointed and to asynchronously checkpoint
this data in a separate thread. In our experiments with
the NAS Parallel Benchmarks we have found that this
analysis can reduce checkpoint sizes by as much as 95%.
These checkpoint size reductions were found to have a
notable effect on checkpointing performance. Further-
more, we evaluated the performance of compiler-enabled
asynchronous checkpointing. Although our experiments
showed that asynchronous checkpointing is frequently
better than blocking checkpointing, we discovered that
this is oftentimes not the case, meaning that the choice
of the optimal checkpointing technique closely depends
on the application. These results also suggest that more
work should be done to understand of the performance
characteristics of asynchronous checkpointing runtime
systems.

nijhuis2
Text Box
This work performed under the auspices of the U.S. Dept. of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

11

2 Threads 4 Threads

-20.00%

-15.00%

-10.00%

-5.00%

0.00%

5.00%

10.00%

15.00%

20.00%
1024 4096 16384 65536 262144 1048576 Infinite

bt
cg
ep
ft
is
lu
sp

-20.00%

-15.00%

-10.00%

-5.00%

0.00%

5.00%

10.00%

15.00%

20.00%
1024 4096 16384 65536 262144 1048576 Infinite

bt
cg
ep
ft
is
lu
sp

Fig. 15. Execution time differences between Incr-Asynch and Incr-Block (input size A)

REFERENCES

[1] http://phase.hpcc.jp/Omni/benchmarks/NPB.
[2] http://www.nas.nasa.gov/Software/NPB.
[3] NR Adiga, G Almasi, GS Almasi, Y Aridor, R Barik, D Beece,

R Bellofatto, G Bhanot, R Bickford, M Blumrich, AA Bright,
and J. An overview of the BlueGene/L supercomputer. In
IEEE/ACM Supercomputing Conference, 2002.

[4] Saurabh Agarwal, Rahul Garg, Meeta S. Gupta, and Jose
Moreira. Adaptive incremental checkpointing for massively
parallel systems. In Proceedings of the 18th International
Conference on Supercomputing (ICS), pages 277 – 286, 2004.

[5] Greg Bronevetsky, Martin Schulz, Peter Szwed, Daniel Mar-
ques, and Keshav Pingali. Application-level checkpointing for
shared memory programs. October 2004.

[6] Greg Bronevetsky, Paul Stodghill, and Keshav Pingali.
Application-level checkpointing for openmp programs. In
International Conference on Supercomputing, June 2006.

[7] J. Duell, P. Hargrove, and E. Roman. The design and imple-
mentation of berkeley lab’s linux checkpoint/restart. Technical
Report LBNL-54941, Lawrence Berkeley National Laboratory,
2006.

[8] Roberto Gioiosa, Jose Carlos Sancho, Song Jiang, and Fabrizio
Petrini. Transparent, incremental checkpointing at kernel level:
a foundation for fault tolerance for parallel computers. In
Supercomputing, November 2005.

[9] Sarah E. Michalak, Kevin W. Harris, Nicolas W. Hengartner,
Bruce E. Takala, and Stephen A. Wender. Predicting the number
of fatal soft errors in los alamos national laboratorys ASC Q
supercomputer. IEEE Transactions on Device and Materials
Reliability, 5(3):329–335, September 2005.

[10] James S. Plank, Micah Beck, and Gerry Kingsley. Compiler-
assisted memory exclusion for fast checkpointing. IEEE
Technical Committee on Operating Systems and Application
Environments, 7(4):10–14, Winter 1995.

[11] Dan Quinlan. Rose: Compiler support for object-oriented
frameworks. Parallel Processing Letters, 10(2-3):215–226,
2000.

[12] Kim Cupps Rob Ross, Jose Moreirra and Wayne Preiffer.
Parallel I/O on the IBM Blue Gene/L system. Technical report,
BlueGene Consortium, 2005.

[13] Jose Carlos Sancho, Fabrizio Petrini, Greg Johnson, Juan
Fernandez, and Eitan Frachtenberg. On the feasibility of
incremental checkpointing for scientific computing. In 18th

International Parallel and Distributed Processing Symposium
(IPDPS), page 58, 2004.

[14] Bianca Schroeder and Garth A. Gibson. A large-scale study
of failures in high-performance computing systems. In In
Proceedings of the International Conference on Dependable
Systems and Networks (DSN), June 2006.

[15] Kun Zhang and Santosh Pande. Efficient application migration
under compiler guidance. In Poceedings of the Conference on
Languages, Compilers, and Tools for Embedded Systems, pages
10–20, 2005.

APPENDIX: OPENMP THEOREMS

Lemma 1: Let n1 →∗ nk be a path in the CFG from
node n1 to node nk such that
mayWillWriteBef [nk](array) = False and no node
n2, ..., nk−1 contains a checkpoint call. Then,
∀1 < l < k.

mayWillWriteBef [nl](array) = True⇔
∀1 < p < l. mayWillWriteBef [np](array) = True

Proof:
Case ⇒:
• Suppose that

mayWillWriteBef [nl](array) = True and
∃1 < p < l.

mayWillWriteBef [np](array) = False.
• Let p′ be the largest such number. As such,

mayWillWriteBef [np′](array) = False,
mayWillWriteBef [np′+1](array) = True.

• mayWillWrite[np′](array) =⋃
m∈succ(np′) mayWillWriteBef [m](array).

• Since
mayWillWriteBef [np′+1](array) = True, we
know that mayWillWrite[np′](array) = True.

• mayWillWriteBef [np′](array) =
[[np′]](mayWillWrite[np′](array), array).

• However, the only statement that can cause a True
to False transition is a checkpoint call and we
have assumed that this cannot happen.

12

Case ⇐:
• Assume that ∀. 1 < p < l.

mayWillWriteBef [np](array) = True.
• This means that

mayWillWriteBef [nl−1](array) = True.
• mayWillWrite[nl](array) =⋃

m∈succ(nl)
mayWillWriteBef [m](array).

• As such, mayWillWrite[nl](array) = True.
• mayWillWriteBef [nl](array) =

[[nl]](mayWillWrite[nl](array), array).
• Since node nl can’t be a checkpoint call, we

know mayWillWriteBef [nl](array) = True.

Lemma 2: Let n1 →∗ nk be a path as above.
∀1 < l < k.

mayWillWriteBef [nl](array) = False⇒
∀l ≤ p ≤ k.

mayWillWriteBef [np](array) = False.
Proof:
• Assume that

mayWillWriteBef [nl](array) = False.
• Suppose that ∃l ≤ p ≤ k.

mayWillWriteBef [np](array) = True
• If l = p we have a contradiction, since

mayWillWriteBef [nl](array) = False.
• Otherwise, l < p and Lemma 1 imply that

mayWillWriteBef [nl](array) = True.
• This contradicts our assumption.

Lemma 3: Let n1 →∗ nk be a path as above.
∃1 ≤ l < k. start_chkpt(array) appears
immediately after node nl or on the edge nl → nl+1 ⇒
∀1 ≤ i < l. mayWillWrite[ni](array) = True and
∀l ≤ j ≤ k. mayWillWriteBef [nj](array) = False.
Proof:
• Since ∃ a start_chkpt(array) call along the

path, we know that either
(i) mayWillWriteBef [nl](array) = True ∧
mayWillWrite[nl](array) = False or
(ii) mayWillWrite[nl](array) = True ∧
mayWillWriteBef [nl+1](array) = False.

• i : 1 ≤ i < l:
– If (ii) is true, we know that

mayWillWriteBef [nl](array) = True
because mayWillWriteBef [nl]](array) =
[[m]](mayWillWrite[nl]](array), array) and
the node nl is not a checkpoint call by
assumption.

– As such, in both cases:
mayWillWriteBef [nl](array) = True.

– From Lemma 1 we know that
∀1 < p ≤ l.

mayWillWriteBef [np](array) = True.

– mayWillWrite[n](array) =⋃
m∈succ(n) mayWillWriteBef [m](array).

– As such, ∀1 ≤ i < l.
mayWillWrite[ni](array) = True.

• j : l ≤ j < k

– If (i) is true, we know that
mayWillWriteBef [nl+1](array) = False
because mayWillWrite[nl+1](array) =⋃

m∈succ(nl+1)
mayWillWriteBef [m](array).

– As such, in both cases:
mayWillWriteBef [nl+1](array) = False.

– According to Lemma 2, ∀l ≤ p ≤ k.
mayWillWriteBef [np](array) = False

Theorem 1: Let n1 →∗ nk and n′1 →∗ n′k be two
paths as above, with n1 = n′1 and nk = n′k.
If ∃ a start_chkpt(array) call on one path then
∃ a start_chkpt(array) call on the other path.
Proof:
• Assume that ∃ a start_chkpt(array) call

along path n1 → n2 →∗ nk−1 → nk.
• From Lemma 3 we know that
∀1 ≤ i < l. mayWillWrite[ni](array) = True
and ∀l ≤ j ≤ k.

mayWillWriteBef [nj](array) = False.
• As such, mayWillWrite[n1](array) = True and

mayWillWriteBef [nk](array) = False.
• Let l be the largest number s.t. 1 < l < k and

mayWillWrite[nl](array) = True.
• Thus, either (i) l = k or

(ii) mayWillWrite[nl+1](array) = False.
• Suppose (i):

– By the start_chkpt placement rules of
Figure 3, start_chkpt(array) would be
placed on edge nl → nk.

• Now suppose (ii):
– Either mayWillWriteBef [nl+1](array) =

True or = False.
– If = True, the the start_chkpt

placement rules of Figure 3 would place
start_chkpt(array) immediately after
nl+1.

– If = False, the rules place place
start_chkpt(array) on edge nl → nl+1.

Theorem 2: Let n1 be the start of the application or
a checkpoint call and let nk be a checkpoint
call or the end of the application. For any two
paths through the CFG from n1 to nk that do not
contain checkpoint calls, if one contains a call to
start_chkpt(array), so does the other.
Proof: Direct application of Theorem 1.

